Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 14(7): 582-604.e10, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37473730

RESUMEN

Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Senescencia Celular , ADN-Topoisomerasas de Tipo II , Animales , ADN-Topoisomerasas de Tipo II/genética , Senescencia Celular/genética , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Daño del ADN , Mamíferos
2.
Cell ; 159(2): 415-27, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25303534

RESUMEN

Epithelial cells acquire functionally important shapes (e.g., squamous, cuboidal, columnar) during development. Here, we combine theory, quantitative imaging, and perturbations to analyze how tissue geometry, cell divisions, and mechanics interact to shape the presumptive enveloping layer (pre-EVL) on the zebrafish embryonic surface. We find that, under geometrical constraints, pre-EVL flattening is regulated by surface cell number changes following differentially oriented cell divisions. The division pattern is, in turn, determined by the cell shape distribution, which forms under geometrical constraints by cell-cell mechanical coupling. An integrated mathematical model of this shape-division feedback loop recapitulates empirical observations. Surprisingly, the model predicts that cell shape is robust to changes of tissue surface area, cell volume, and cell number, which we confirm in vivo. Further simulations and perturbations suggest the parameter linking cell shape and division orientation contributes to epithelial diversity. Together, our work identifies an evolvable design logic that enables robust cell-level regulation of tissue-level development.


Asunto(s)
Células Epiteliales/citología , Modelos Biológicos , Morfogénesis , Pez Cebra/embriología , Animales , Fenómenos Biomecánicos , Recuento de Células , División Celular , Forma de la Célula , Embrión no Mamífero/citología
3.
Cell ; 153(3): 550-61, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622240

RESUMEN

Sharply delineated domains of cell types arise in developing tissues under instruction of inductive signal (morphogen) gradients, which specify distinct cell fates at different signal levels. The translation of a morphogen gradient into discrete spatial domains relies on precise signal responses at stable cell positions. However, cells in developing tissues undergoing morphogenesis and proliferation often experience complex movements, which may affect their morphogen exposure, specification, and positioning. How is a clear pattern achieved with cells moving around? Using in toto imaging of the zebrafish neural tube, we analyzed specification patterns and movement trajectories of neural progenitors. We found that specified progenitors of different fates are spatially mixed following heterogeneous Sonic Hedgehog signaling responses. Cell sorting then rearranges them into sharply bordered domains. Ectopically induced motor neuron progenitors also robustly sort to correct locations. Our results reveal that cell sorting acts to correct imprecision of spatial patterning by noisy inductive signals.


Asunto(s)
Morfogénesis , Células-Madre Neurales/metabolismo , Tubo Neural/citología , Transducción de Señal , Pez Cebra/embriología , Animales , Movimiento Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Hedgehog/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
4.
Mol Syst Biol ; 8: 568, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22294094

RESUMEN

Following DNA damage, cells display complex multi-pathway signaling dynamics that connect cell-cycle arrest and DNA repair in G1, S, or G2/M phase with phenotypic fate decisions made between survival, cell-cycle re-entry and proliferation, permanent cell-cycle arrest, or cell death. How these phenotypic fate decisions are determined remains poorly understood, but must derive from integrating genotoxic stress signals together with inputs from the local microenvironment. To investigate this in a systematic manner, we undertook a quantitative time-resolved cell signaling and phenotypic response study in U2OS cells receiving doxorubicin-induced DNA damage in the presence or absence of TNFα co-treatment; we measured key nodes in a broad set of DNA damage signal transduction pathways along with apoptotic death and cell-cycle regulatory responses. Two relational modeling approaches were then used to identify network-level relationships between signals and cell phenotypic events: a partial least squares regression approach and a complementary new technique which we term 'time-interval stepwise regression.' Taken together, the results from these analysis methods revealed complex, cytokine-modulated inter-relationships among multiple signaling pathways following DNA damage, and identified an unexpected context-dependent role for Erk in both G1/S arrest and apoptotic cell death following treatment with this commonly used clinical chemotherapeutic drug.


Asunto(s)
Apoptosis/genética , Daño del ADN/genética , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Apoptosis/fisiología , Microambiente Celular/genética , Microambiente Celular/fisiología , Biología Computacional/métodos , Daño del ADN/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Humanos , Modelos Biológicos , Modelos Teóricos , Transducción de Señal/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Biología de Sistemas/métodos , Células Tumorales Cultivadas , Estudios de Validación como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...